If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+14p+18=0
a = 1; b = 14; c = +18;
Δ = b2-4ac
Δ = 142-4·1·18
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{31}}{2*1}=\frac{-14-2\sqrt{31}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{31}}{2*1}=\frac{-14+2\sqrt{31}}{2} $
| w+34=2w | | 26x+31=22x=59 | | w=2(w+34) | | 8f-5f=22 | | 2−3(4−x)=5(2−x)+4x | | 12x-11x=26-48 | | -10m+8-12m+4=8m | | 8=-7p+6-5 | | 8=57x | | 0.5x−3.5=0.2x−0.5 | | p+34=2p | | -6x+49-6x16)=-176 | | y=2(y-9) | | 3x+12=6x+8-3x+4 | | 2x-4(-4+15)18=168 | | x=76-33+198 | | 5/2+2r+7-2=5 | | 72-29b-10b^2=0 | | 9x-9=9x+18 | | -3x-5(4x-18)=205 | | -2x+1x+-2+5=10 | | s=2(s+8) | | 2(s+8)=s | | 50-3x=13x+2 | | |3x-7|=|x+3| | | 5/6-x=1/2x+7/3 | | b+6+3=17 | | 7x-6(-5x+9)=168 | | 2x²-5x+20=120 | | 2w-39=8w-75 | | 10^3x=5 | | 8(+3)=4b-4 |